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Abstract. The uncertainty of photovoltaic and demand response brings challenges to the optimal 

scheduling of integrated energy system (IES) in the market circumstances. In this paper, the uncertainty 

model of photovoltaic and demand response is firstly established. On this basis, an optimal scheduling 

strategy based on interval linear stochastic chance constrained programming is proposed. The uncertainty of 

renewable energy generation prediction is described by probability distribution function, and the uncertainty 

of load participating demand response is described by interval number. Thus, an interval linear stochastic 

chance constraint programming model is constructed, and the model is solved by Cplex solver. The proposed 

method is compared with the interval linear programming and stochastic chance constrained programming 

models used separately in IES. The results show that the proposed method has lower operating cost and less 

dependence on the prediction accuracy, and can improve the economy of IES while ensuring the safe 

operation of the system. 

Keywords: integrated energy system; uncertainty of source and load; day-ahead scheduling; interval linear 
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1. Introduction  

The gradual exhaustion of fossil energy and the increasingly serious environmental pollution make the 

efficient use of energy become imperative. The application of renewable energy, energy marketization and 

multi-energy interconnection have become the focus of scholars to promote clean and efficient use of energy 

[1-3]. 

Compared with the traditional single electric energy utilization mode, the integrated energy system (IES) 

[4-6] realizes the flexible transformation and unified management of different energy with the help of 

advanced conversion and storage equipment [7-8]. It provides a new solution for promoting the absorption of 

renewable energy and improving the operation economy of the system. In terms of promoting the absorption 

of renewable energy, [9] proposes a double-layer optimal scheduling model for IES considering the 

conversion of electricity to gas. And it proves that the conversion of electricity to gas can effectively 

improve the absorption capacity of wind power of the power grid through case analysis. In terms of 

improving system running economy, [10] studies the IES optimization scheduling method, and it establishes 

the electricity as the core of IES optimization scheduling model, as the scheduling model by using particle 

swarm optimization algorithm, verify that subsystems of IES can complement each other to effectively 

increase the efficiency. 
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However, most of the above research only study the optimization of IES from the perspective of source 

and network, without considering the potential effects of various demand side management (DSM) measures 

that may exist in the actual situation. In the actual integrated energy system, system operators can guide users 

to actively adjust their own energy consumption and participate in demand response (DR) by virtue of 

advanced information and communication technology, thus effectively improving the flexibility of system 

operation [11]. In view of this, [12] analyzes the contribution of demand response in IES to improving the 

economy and flexibility of the system based on cold, heat and electricity loads. [13] reveals the influence of 

DR on system investment income by establishing a sustainable planning model of IES. 

At present, most studies on IES only focus on deterministic systems without considering the influence of 

various uncertainties in practical engineering. In fact, for IES including renewable energy, the randomness, 

intermittency of power generation and the fluctuation of various loads lead to the existence of multiple 

uncertainties, which makes it impossible to predict the power generation and load accurately. Therefore, it is 

impossible to make an accurate dispatching plan for the system, which has a great impact on the stability and 

economy of the operation of IES. 

Based on the above background, this paper takes IES as the research object, which is composed of 

renewable energy, heat and electricity load and other uncertain units, power grid, cogeneration unit, 

electricity storage system, heat storage system, gas boiler and other controllable energy supply and 

consumption units. In addition, aiming at the economic operation of the system, the uncertainty of 

photovoltaic and demand response is modelled, and the source-load uncertainty optimization model based on 

interval linear stochastic chance constraint programming is established. Finally, an example is given to verify 

the feasibility and rationality of the proposed method. 

2. Source-load Uncertainty Model  

2.1. Uncertainty of Photovoltaic Power Generation  

Studies show that photovoltaic power is affected by solar irradiance, weather type, season and ambient 

temperature [14]. The randomness of weather factors makes the prediction error of photovoltaic power also 

randomness. According to the inference of the central limit theorem, data obtained by simple random 

sampling generally obey normal distribution [15]. Relevant studies have shown that the prediction error of 

renewable energy conforms to normal distribution [16]. 

Therefore, the photovoltaic prediction error is considered to be normal distribution in this study. Assume 

that the prediction error of the random variable renewable energy power generation power is pvP , the error 

expectation is 0, and the variance is 
2

pv . The probability density function of the prediction error is shown in 

(1). 
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2.2. Uncertainty of Loads Involved in Demand Response  

The uncertainty of demand response is mainly reflected in the uncertainty of the loads involved in the 

demand response. In actual engineering systems, users' willingness to use energy is determined by 

psychological factors and living habits, so it is difficult to establish the probability distribution function 

accurately [17]. Therefore, the interval method is used in this paper to describe the predicted value of 

electrical load and heat load, as shown in (2) and (3).  

e[ ] [1 ,1 ], [0,1]n n

load eload e e eP P   = − +                                                          (2) 

[ ] [1 ,1 ], [0,1]n n

hload hload h h hH H   = − +                                                           (3) 

Where, the symbol [] represents interval number or interval variable. e

n

loadP ,
n

hloadH are respectively the predicted 

value of electrical load and thermal load of the energy hub n; e , h  are respectively the relative prediction 

error of electrical load and thermal load. 
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3. Demand Response Mechanism Modelling  

Demand response can optimize the load curve by guiding users to change their energy consumption 

behavior through price, so as to mobilize the flexibility of the load side and reduce the energy supply 

pressure during peak energy consumption periods. Price signals can be divided into time-of-use (tOU) price 

and peak-valley price according to the time scale [18]. In this paper, tOU price is adopted to fine-analyze the 

impact of demand response on scheduling operation. 

The power load after demand response can be obtained as follows: 

e e 0 e

n n n

load load loadP P P= +                                                                         (4) 

Where, e 0

n

loadP  is the pre-response power load demand; e

n

loadP is the change of power load after the 

implementation of demand response, which has the following relationship with the change of tOU price: 
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Where, e ,

n

load NORP  is the normalized matrix of power load change; NORe is the normalized matrix of tOU price 

changes; E  is the elasticity matrix of electricity price; e 0,

n

load iP  and 0

ie are the original power demand and tOU 

price of time period respectively; e ,

n

load iP and ie  are respectively the changes of power demand and tOU price 

before and after the implementation of demand response; e is the change of tOU price before and after the 

demand response; T  is the total number of scheduling periods. 

Loads can be classified according to the degree to which they are affected by price. The price elasticity 

parameters of various loads are determined by comparing the demand - price changes at the same time after 

the base date and time-sharing price. In this paper, the self-elasticity coefficient of electricity is set as -0.1 by 

referring to the analysis data of the American industrial department [19]. 

4. Day-ahead Economic Scheduling Considering Source - load Uncertainty 

The IES in this paper mainly includes photovoltaic power generation devices, combined heat and power 

(CHP) units, gas boiler (GB) and Electric boiler (EB), and they are connected to the main power grid to meet 

the thermal and electrical load requirements of users. The specific structure is shown in the fig.1: 

 

Fig. 1. Structure of IES. 

In this paper, a day-ahead optimization scheduling model of IES based on interval linear stochastic 

chance constraint programming is established, considering the stochastic chance constraint programming of 

photovoltaic output uncertainty and the interval linear programming of participating in demand response load 

uncertainty. 
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4.1. The Objective Function 

Taking economic optimization as the optimization objective, the objective function of the optimization 

scheduling model is set as the operating cost of the comprehensive energy system within a single scheduling 

cycle, as shown in (8). 

       ( )total E CHP GBminC C C C= + +                                                            (8) 

Where,  total C  is the interval number of the total operating cost within the scheduling period of the integrated 

energy system;  EC  is the interval number of power purchase cost from large grid;  CHPC  is the interval 

number of CHP unit start-up and shutdown and operation cost;  GBC  is the interval number of GB operating 

cost. 

The purchase cost of large power grid is shown in (9). 

   E Grid Grid 
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Where, k is the specific time period of the scheduling cycle, T is the number of time periods of a single 

scheduling cycle, and can be set to 24 for day-ahead scheduling.  Grid ( )P k  and Grid ( )c k  are the interval number 

and price of power purchased from the large grid in the k period respectively; t  is a single scheduling 

period. 

The start-up and operation costs of CHP units are shown in (10). 
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Where, CHP

U,DS  is the single start-up and shutdown cost of CHP unit; B is the operating status of the CHP unit 

at the last moment on the scheduling day; CHP ( )k  is the operating status of CHP unit in the period k, where 1 

stands for running and 0 stands for stopping. CHP ( )k  and  CHP ( )H k are the interval numbers of generation 

power and heat generation power of the CHP unit in the period k; A, B and c are linear fuel cost coefficients 

of CHP unit. 

GB operating cost is shown in (11). 
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Where, gasc  is the natural gas cost coefficient; GB  is the heat generation efficiency of GB;  GB ( )H k  is the 

interval number of GB heat generation power in the period k. 

4.2. The Constraints 
I. Power constraints of IES 

Power constraint of IES includes balance constraint of electric power and thermal power. The electric 

power balance constraint is shown in (12). 
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
  = +    


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                                                   (12) 

Where, Pr{} is the probability of the establishment of constraint conditions;  is the given confidence level; 

e,EB ( )P k    and e, load ( )mP k   are respectively the interval number of EB input power of electric boiler and electric 

load of the energy hub n in the k period; Renew ( )P k is Photovoltaic power of renewable energy in the period k; 

Represents the prediction error of renewable energy photovoltaic power generation in period k; Renew ( )P k is a 

random variable, and its probability distribution function is given in (1). 

Thermal power balance constraint is shown in (13). 
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Where, T,c ( )k and T,d( )k are the binary variables of TSS charging and releasing state in period k respectively; 

T,c ( )Q k    and T,d ( )Q k    are the interval numbers of TSS heat charge and release power in period k; EB  is the 

heat generation efficiency of EB; h,load ( )mH k    and h,loss ( )H k    are respectively the number of heat load interval of 

building m and the number of total heat loss power interval of the building in period k. 

II. Constraints on CHP unit operation 
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Where, max

CHPP  and min

CHPP  are respectively the maximum and minimum power of the CHP unit under pure 

coagulation condition; 
max

CHPH  is the maximum heat generation power of CHP unit; 1c  and 2c  are the slope of 

condensing unit curve;  is the curve slope of the back pressure unit; 0H  is the heat threshold of the work 

done by the steam driven steam turbine of the back pressure unit. 

III. Power constraints of GB, EB and main grid connection line 

  max

GB GB0 ( )H k H                                                                    (15) 

max

e,EB EB0 ( )P k P                                                                     (16) 

  max

Grid Grid0 ( )P k P                                                                   (17) 

Where, 
max

GBH  is the maximum heat generation power of GB; 
max

EBP is the maximum input power of EB; 
max

GridP  is 

the maximum purchased power of the integrated energy system. 

4.3. Model Performance Index 

In this paper, the operating cost fluctuation index is used to conduct a comparative study on the uncertain 

model and the deterministic model, as shown in (18). 

( )u u c

c

/ 2
100%

f f f

f


+ −+ −
=                                                             (18) 

Where,   is the fluctuation index of the operating cost of the interval model; cf  is the operating cost of the 

determined model; uf
+  and uf

−
 are respectively the upper and lower limits of the interval number of the 

operating cost of the interval model. 

4.4. Model Solution 

The optimal scheduling model of IES constructed in this paper is essentially an interval linear random 

chance constrained programming model. Firstly, the model is decomposed into two sub-models, and then the 

opportunity constraint conditions in the sub-models are transformed into definite equivalent conditions. The 

original model is replaced by the optimal sub model and the worst sub model after transformation, and the 

optimal value of each sub model is obtained respectively, so as to obtain the optimal value range. The 

solution method of the model refers to the enhanced interval linear programming method [19] and the 

interval credibility opportunity constrained programming method [29]. 

5. The Case Studies 

The IES constructed in this paper includes 5-node network [20] and 6-node thermal network [21]. 

Thermal network loss parameters, TSS parameters, CHP unit operating characteristic interval parameters [22] 

and ESS parameters details as references. 
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Fig. 2. Photovoltaic forecast data. 

Photovoltaic forecast data curve is shown in Figure 2. The thermal and electrical load prediction data of 

typical buildings are shown in Figure 3. Power purchase price and unit calorific value price of natural gas are 

provided in [15] 

 

Fig. 3. Electrical and thermal load data. 

5.1. Analysis of Demand Response Results 

For demand response, the relationship model between tOU price and electricity load is established. 

Fig. 4 shows the total load curve before and after the demand response. After the demand response, the 

load fluctuation is suppressed to a certain extent, the trough load increases and the peak load decreases. This 

is because through demand response, the peak load is transferred to the trough period, which promotes the 

effective transportation of energy. Thus, power flow congestion is alleviated and the system is not operated 

in the less efficient peak hours. 

 

Fig. 4. Load before and after DR. 

The figure below shows tOU price before and after demand response. The price difference of time-

sharing energy expands further after the demand response, that is, the valley electricity price decreases and 

the peak electricity price increases. This encourages users to use less energy in peak times and more energy 

in trough times, and the scheme of social energy use becomes more efficient. 
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Fig. 5. Electrical price before and after DR. 

5.2. Analysis of Uncertain Results 

Three cases are presented for comparative analysis. 

1) Model 1. Considering only photovoltaic uncertainty, stochastic chance constrained programming is 

used. 

2) Model 2. Considering both photovoltaic and load uncertainties, stochastic chance constrained 

programming is used. 

3) Model 3(proposed in this paper). Considering both photovoltaic and load uncertainties, interval linear 

random chance constrained programming is used. 

Fig.6 shows the fluctuation indices of system operating costs in model 1, model 2 and model 3 at 

different confidence levels. The increase of confidence level means that the constraint ability of the system to 

meet the equilibrium condition is stronger, and the predicted value of the random variables in the model must 

be reduced accordingly to meet the requirements. In model 2, both photovoltaic and load uncertainties are 

dealt with by stochastic chance constraint programming method, and the proportion of load random variable 

is higher than photovoltaic random variable, so the fluctuation index changes in a downward trend and the 

range of variation is larger. Both model 1 and model 3 use stochastic chance constraint programming to deal 

with photovoltaic uncertainty, so the fluctuation index has the same trend. 

 

Fig. 6. Operating cost volatility index β. 

Model 1 does not consider the uncertainty of load, while model 3 adopts interval linear programming 

method to deal with the uncertainty of load. At the same confidence level, the fluctuation index decreases 

with the increase of relative error of load prediction, and the overall economy of this case is higher than that 

of model 1. For load forecasting model of α = 0.05 in model 3, the volatility index features largely consistent 

with the model 2, and the volatility index change range is smaller than model 1. Compared with model 1, 

which only considers photovoltaic uncertainty, model 3 not only considers photovoltaic and load uncertainty, 

but also has a smaller range of cost fluctuation than model 2. The model has lower dependence on prediction 

accuracy and higher stability. 

6. Conclusion 

Under the background of Energy Internet, multiple uncertainties such as renewable energy generation 

and the prediction error of participating demand response load are considered in IES. Based on stochastic 

chance constraint programming and interval linear programming, a day-ahead economic scheduling model of 

IES based on interval linear chance constraint programming is established. The results show that compared 

with the traditional scheduling model which only considers single uncertainty or only uses one method to 

deal with multiple uncertainties, the proposed interval linear stochastic chance constraint programming 

model is superior. While considering multiple uncertainties, it uses different processing methods for different 

characteristics of uncertainties, which reduces the dependence on prediction accuracy and improves the 

operation economy of the system. In addition to the uncertainties of new energy output, users' own energy 

consumption and demand prediction, there are still uncertainties such as random failures of capacity 

equipment/energy conversion equipment/energy transmission equipment, short-term energy market price 

changes, and even the impact of weather on heat generation/storage efficiency. These uncertainties are 

148



  

coupled to some extent, so it is necessary to model the uncertainty of comprehensive demand response 

reasonably. This is also the focus of future research in this paper. 
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